Mandelbrot Sets

Created by Jordan Nakamura

How to use Sage

- Go to: www.sabenb.org in order to access the notebook
- Go to: http://sagemath.org in order to download SAGE.
- (Note: You don't need to download SAGE to use it! You can just access the notebook online to use it!)

SAGE API

- http://www.sagemath.org/doc/reference/

Definition

- All the complex numbers such that:

$$
-\quad Z_{n+1}=Z_{n}^{2}+c
$$

- Is bounded.
- i.e. If $Z_{20}<2.0$ then we will assume it is bounded!
- By definition $Z_{0}=0$
- More information on http://en.wikipedia.org/wiki/Mandelbrot_set

Example

- Complex number c $=2+2 i$

$$
\begin{aligned}
& Z_{0}=0 \quad Z_{1}=Z_{0}^{2}+(2+2 i) \quad Z_{2}=Z_{1}^{2}+(2+2 i)=(2+2 i)^{2}+(2+2 i)=(2+10 i) \\
& Z_{3}=(2+10 i)^{2}+(2+2 i)=(-94+42 i)
\end{aligned}
$$

$$
Z_{20}=\left(5.8 x 10^{263801}+8.9 x 10^{263801} i\right)
$$

For sake of simplicity, assume $Z_{20}=(40+40 i)$ $\operatorname{abs}\left(Z_{20}\right)=\sqrt{40^{2}+40^{2}}=\sqrt{1600+1600}=\sqrt{3200}=56.56$
For sake of simplicity, assume $Z_{20}=(40+40 i)$ $56.56>2.0^{20}$ So it is not bounded.

Example 2

$$
C=0+0 i
$$

$$
\begin{aligned}
& Z_{0}=0 \\
& Z_{20}=0^{2}+0 i \\
& \operatorname{abs}\left(Z_{20}\right)=\sqrt{0^{2}+0^{2}}=0
\end{aligned}
$$

$$
0<2
$$

So it is bounded. Therefore, the point $(0+0 i)$ is in the Mandelbrot Set.

Complex Plane

- It looks just like the Cartesian coordinate plane, except the "x-axis" is the real numbers and the " y-axis" is the imaginary parts.
- Real numbers are complex numbers without the "imaginary" part.
- Complex number $=2+3 i$ real imaginary

